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Learning and teaching medicine is a difficult task, par-
tially due to the complexity of the subject and limi-
tations of traditional pedagogic methods (lectures, 

textbooks, laboratory, and anatomical dissections).11,22,24, 

39,43 These resources have been used for decades, with in-
trinsic drawbacks; traditional methods of teaching com-
prise noninteractive educational tools and do not provide 
any 3D experience (stereoscopy).3,13,19,37,38,44,47

Cadaver dissection is a valuable resource.55,58 It pro-
vides an immersive and interactive experience allied with 
tactile feedback. However, it has several limitations, in-
cluding availability of specimens, cost, and a substantial 
time commitment.21,23,36,40–42 Substances used for fixation, 
preservation, and preparation, e.g., formaldehyde, can be 
toxic, in addition to posing inherent risk of contamina-
tion.1,10,12,42 As a consequence, cadaver dissection repre-

sents a small part of the time dedicated to medical educa-
tion.4,9,20,21,33,39–42

Computer-based virtual reality methods may overcome 
these drawbacks and provide interesting alternatives for 
medical training. However, virtual reality tools for general 
medical education are still expensive due to the technol-
ogy necessary to create highly detailed, immersive 3D im-
age environments with real-time, user-friendly interactiv-
ity.2,5,6,15,17,18,24,29,48,54,59

The QuickTime (QT) framework may function to im-
part the concepts of virtual reality methods that generate 
interactive environments. The platform can be used for in-
teractive and photorealistic display of medical images (ra-
diological, anatomical, and histological), and its nonlinear 
format provides interactivity. However, most medical edu-
cators are not familiar with these methods. Studies pub-
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lished between 2000 and 2006 applied this technology, 
often coupled with robotic microscopes.5,6,18,20,54 Nonethe-
less, their pedagogic efficacy remains controversial.

In this study, the authors used an interactive, photoreal-
istic, and stereoscopic method for teaching neuroanatomy, 
a concept whose rationale was first described by Henn 
and coworkers.20 Additionally, a pedagogic evaluation was 
performed to demonstrate the educational benefits, com-
paring it with conventional methods.

methods
Forty fresh brains (80 hemispheres) were obtained at 

the Department of Pathology of the University of São Pau-
lo and submitted to specific neuroanatomical techniques. 
The internal carotid and vertebral arteries were channeled 
with a PVC silicone probe (Embramed). Volumes of 5 ml 
and 10 ml of latex (Prevtex, Bagdalatex) previously mixed 
with a red dye (Chess R, Sherwin Williams Brazil) were 
injected into the vertebral and carotid arteries, respective-
ly. The dissection was performed under magnification us-
ing a surgical microscope (Model L-860, Cemapo).

image acquisition
Specimens were placed on a manual-spin turntable 

platform developed specifically for this purpose (Fig. 1). 
The platform had a manual-swivel arm bracket on which 
to place a camera and provided the ability to control each 
5°, 10°, 15°, or 20° angle of movement when mounted on 
the movable head (Model 300N, Manfrotto). The system 
enabled the camera to be move in a 180° arc. The turn-
table platform base was circular in shape, allowing a dis-
placement of up to 360° clockwise and counterclockwise 
(Fig. 2).

For image acquisition, we used a Sony Cyber-Shot DSC-
H55 digital camera (14.1 megapixels, 10× optical zoom, 
liquid-crystal display screen) with a 25-mm wide-angle 
lens. The camera was placed in the arm and the specimen 
was set onto the turntable platform. By moving the arm 
and the platform at predefined angles, images from differ-
ent anatomical perspectives were acquired and recorded 
in a grid of consecutives images (Figs. 2 and 3). A pair of 
images (right and left) from each perspective was also used 
to obtain the stereoscopic pairs (Fig. 4).

The images were processed using commercially avail-
able VR Worx 2.6 software (VR Toolbox, Inc.), which ar-
ranges the pictures into a grid, allowing for composition 
in a nonlinear and interactive format. StereoPhoto Maker 
software (http://www.stereomaker.net) was used to com-
bine the stereoscopic pairs. The right and left images were 
combined and integrated, stored in the form of anaglyph 
stereoscopic images in JPG format, and then reapplied in 
the VR Worx 2.6 software (Figs. 3 and 4). This methodol-
ogy, first used by Henn et al., allows an immersive, interac-
tive, and stereoscopic experience. A total of 7300 images 
were obtained and displayed in QT format.

pedagogic evaluation
We compiled a list of class topics from the curriculum at 

the University of São Paulo Applied Neuroanatomy Grad-
uate Medical Program, and the limbic system was drawn 

at random as the subject for the evaluation. To assess prior 
knowledge, the students were instructed to list limbic sys-
tem structures. This “pretest” was used to verify whether 
there were previous differences in knowledge among the 3 
groups. The groups scored very similarly in this regard (p 
> 0.05), demonstrating their homogeneity.

A total of 84 students were randomly assigned to 1 of 
3 groups, each consisting of 28 individuals: Group 1 was 
instructed by conventional methods, Group 2 engaged in 
interactive nonstereoscopic learning methods, and Group 
3 students were instructed by interactive stereoscopic lec-
tures. Students in the first group attended a conventional 
lecture, with 2D images exhibited in a single-angle view. 
The second group attended a class where interactive teach-
ing resources were applied without the use of stereoscopic 
images. In this environment, the instructor (J.W.V.F.) pre-
sented the lesson using features of the LanSchool software 
(Stoneware, Inc.); this program restricts students’ class-
room computer use to class-related resources only, which 
allows the class to proceed without student interference. 
The third group underwent the same interactive lecture 
as that of Group 2, but with the addition of stereoscopic 
methodologies (Videos 1 and 2).

video 1. Video clip showing an interactive and nonstereoscopic 
movie depicting the ventricular surface of the hippocampus. The 
movie allows users to view anatomical specimens from all angles in 
2 axes (vertical and horizontal) by dragging the mouse. It should be 
visualized using QTVR player and while wearing stereoscopic ana-
glyphic glasses. Copyright Eberval Gadelha Figueiredo. Published 
with permission. Click here to view.
video 2. Video clip showing an interactive and stereoscopic movie 
depicting the ventricular surface of the hippocampus. The movie 
allows users to view anatomical specimens from all angles in 2 
different axes (vertical and horizontal) by dragging the mouse. It 
should be visualized using QTVR player and while using stereo-
scopic anaglyphic glasses. Copyright Eberval Gadelha Figueiredo. 
Published with permission. Click here to view.
At the beginning of the Group 3 class, the instructor 

confirmed with the students that they were able to visu-

Fig. 1. Illustration showing the rotating platform built for image acquisi-
tion. Circular movements of the turntable at predefined angles provided 
horizontal panning. The arm (with the camera) provided movement in 
the vertical axis. By combining vertical and horizontal movements, it was 
possible to acquire images in different perspectives. Thus, the students 
could examine the anatomical structures from different points of view. 
Copyright Eberval Gadelha Figueiredo. Published with permission. Fig-
ure is available in color online only.
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alize the stereoscopic images. The theoretical content of 
the 3 classes was identical, literally following a previously 
prepared text. The classes were 50–60 minutes in dura-
tion, and students were not allowed to intervene.

Pedagogic evaluation was carried out after each class. 
Students were asked to list the names of the structures of 
the limbic system. We considered those structures to be the 

cingulate gyrus, callosum, septal area, amygdala, parahip-
pocampal gyrus, fornix, uncus, mammillary bodies, thala-
mus, and hypothalamus. Therefore, students could score 
0–10, depending on how many structures they properly 
cited. Additionally, in the practicum, they were required 
to identify the same structures on real specimens. Practi-
cal assessment involved student recognition of anatomical 
structures in specimens distributed at 10 stations. At each 
station, students were asked to write the name of the indi-
cated anatomical structure. The practicum instructor was 
blinded to the students’ lecture group.

Students who attended the interactive classes with 
(Group 3) and without (Group 2) stereoscopy were asked 
to describe the advantages and disadvantages of these re-
sources.

statistical analysis
The performance of the groups was described using 

percentages, means, and standard deviations (SDs). Com-
parison between groups was made by ANOVA and the 
Tukey test for multiple comparisons. ANOVA was per-
formed after data transformation by √(x +1), which sat-
isfied the assumptions of the analysis in which the resi-
dues of ANOVA showed normal distribution through the 
D’Agostino test. Size effect was calculated by using the 
standardized differences between the means (before and 
after lectures) of the groups. Size effects ≥ 0.2 and < 0.5 
are low, ≥ 0.5 and < 0.8 are average, and ≥ 0.8 are consid-
ered high. The level of statistical significance was set at 

Fig. 2. Diagram showing how the camera was rotated around the ana-
tomical specimen to obtain photographs from various perspectives. The 
camera was moved along 2 axes: horizontal (pan) and vertical (tilt) at 
predefined angles. Figure is available in color online only.

Fig. 3. An example of a grid of images obtained in the cerebrum from various perspectives. The photographs will be processed in 
the VR Worx 2.6 software, whereby the images will be viewed as a continuum, giving the impression that the brain is moving and, 
thus, revealing its anatomical nuances. Figure is available in color online only.
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0.05. The SPSS software version 17.0 (IBM) was used for 
analysis.

results
The means of the scores obtained before classes were 

analyzed for each group and did not statistically differ (p 
> 0.05), showing similar previous knowledge (Table 1). 
Groups 2 and 3 presented the highest means and differed 
from Group 1 (p < 0.05) in the theoretical exam (Table 
1). Group 2 did not differ statistically from Group 3 (p 
> 0.05). The size effect measurement demonstrated a rel-
evant and meaningful improvement (42%) in the means of 
Groups 2 (6.77) and 3 (6.78) compared with Group 1 (4.77) 
(Table 1). Size effect was greater than 0.8 in Groups 2 and 
3 and ≥ 0.2 and < 0.5 for Group 1.

ANOVA results and the Tukey test demonstrated a 
statistical difference between the mean scores (± SD) of 
Group 1 (4.36 ± 1.33) and Groups 2 (6.36 ± 1.58) and 3 
(6.45 ± 1.31) in the practicum (p < 0.05). Similarly to the 
theoretical test, there were no statistical differences be-
tween Groups 2 and 3 (p > 0.05).

Students in Group 3 pointed out several negative as-
pects of this method: 4 students complained of eyestrain, 
12 cited the absence of names and texts, and 4 noted the 
impossibility of physical contact.

discussion
Neuroanatomy is difficult to teach, mainly due to the 

structural complexity of the brain and limitations of con-
ventional methods.43,49–53 In this scenario, methods based 
upon virtual reality technology may represent alternative 
resources.58 Nonetheless, these methods increase edu-
cational costs and sometimes cannot be applied to large 
audiences. Despite, their potential advantages over con-
ventional resources, their pedagogic effectiveness has not 
been assessed thus far.

interactivity and Qt virtual reality
QT is a standard set of operating system–level graph-

ics, audio, and digital video extensions developed by Apple 
Computer, Inc. First released in 1992 for the Macintosh 
operating system, QT 1.0 primarily emphasized the han-
dling of usual, time-based “linear” digital video and au-
dio.5,6,16,20,54

Linear video is conceptually similar to a regular movie, 
as classically conceived: a sequential, time-based sequence 
of single image frames. Linear videos play back frames at 
a constant pace starting with the first image and finishing 
with the last. When a video is played back, central visual 
mechanisms, described physiologically as persistence of 
vision, permit the viewer to realize movement within the 
sequentially displayed frames, generating a sensation of 
continuity.5,6,16,20,54 However, one of the disadvantages of 
linear movies is that they do not deliver interactivity.

Conversely, nonlinear video is a subset of a movie that 
allows the viewer to play back videos in a randomized and 
interactive way. The images may be displayed depend-
ing on the user commands and not obligatorily in a linear 
manner, i.e., from the first to the last frame.5,6,16,20,54 This 
capability permits interactivity as the user may entirely 
manipulate the movie content, regardless of the sequence 
of the frames.5,6,16,20,54

In the nonlinear mode, instead of playing back at a de-
fined frame rate, users may actively control which frame 
of a QT virtual reality (QTVR) video will be displayed 
at a specific time. Using the personal computer mouse as 
an input device, students can look at a panoramic view or 
rotate a highly detailed anatomical object. Since the for-
mat is nonlinear, QTVR content provides indiscriminate 
access for control over the fourth dimension, time, in visu-
alizing medical images.5,6,16,20,54

The “object movie” allows users to appreciate objects 
from all angles, in 2 different axes: vertical and horizon-
tal (Fig. 2). The camera orbits the object and is rotated in 
predefined angles. The object is at the center and is, thus, 
visualized from several perspectives (Fig. 2). Congruent 
with the format of QTVR videos, object movies are com-
posed of a set of individual image frames (Fig. 3) that are 
played in a nonlinear fashion.5,6,16,20,54

This format is appropriate for presenting structural de-
tails of anatomical specimens from almost every perspec-
tive. The student may virtually manipulate the specimen 
and visualize the anatomical relationships. The QTVR 
object movie format provides a practical means of simu-
lating the handling of anatomical specimens. Object mov-
ies offer a compelling experience in settings where real 
specimens are unavailable or unpractical.5–8,16,20,54

We added stereoscopy by taking stereo pairs (left and 
right images) and delivered “immersivity,” which depends 
upon interactive and stereoscopic visualization of photo-
realistic images.45,46,57

table 1. comparison of the mean scores before and after class 
and size effect of intervention in each group*

Group Before Class After Class Size Effect

1 1.62a ± 0.65 4.72b ± 1.20† 4.77
2 1.57a ± 0.65 5.97a ± 1.28† 6.77
3 1.62a ± 0.65 6.03a ± 1.20† 6.78

* Scores are based on a scale of 0–10.
† Values represent the statistical difference between mean scores (p < 0.05). 
Means followed by the same letter (a or b) do not differ statistically in Tukey 
test (p > 0.05).

Fig. 4. An example of stereo-paired images (right and left) combined 
using StereoPhoto Maker. Figure is available in color online only.
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image acquisition and stereoscopy
Stereoscopic images were captured using a single non-

stereoscopic camera, moved directly into convergent axes. 
Verging axis configurations, the intersection of canonical 
optical configurations created by parallel camera angles, 
lead to “keystone” distortion resulting from vertical mis-
alignment, and may cause discomfort for the observer.14 
Images obtained at lower angles (5°) had fewer distortions 
than those in larger displacement (15°).

Similarly, acquisition from the displacement of images 
in parallel axes causes a deformation called “frustum.” 
This deformation requires that part of the image be omit-
ted to present a common visual field, and then the small 
portion of the picture that is not common to both photo-
graphs is removed.14 In our study, no specific complaint 
about the quality of image display was made; however, 4 
students in Group 3 (class with stereoscopy) complained 
of eyestrain.

The images were displayed on an anaglyph system.45,46,57 
The advantages of this system is that it can be displayed 
with just 1 projector, a metalized screen is not needed, 
and glasses are passive, requiring no additional technol-
ogy. The image can be printed or viewed on a common 
personal computer monitor. 45,46 The drawback is that the 
color filters may impair the quality of the images;14,37,45,46 
nonetheless, the polarized method using a silver screen 
produces quality images and better display of all colors. 
However, polarized or active glasses may also be used, if 
additional costs are not an issue.

previous studies
Trelease and colleagues published a review suggest-

ing the possibility of using QT for viewing anatomical 
structures.54 Henn and colleagues were the first to couple 
QTVR methods with stereoscopy to display cadaver dis-
sections. They used a robotic microscope with operator 
motion control to acquire anatomical images,20 and the 
images were viewed using shutter glasses. However, in ad-
dition to being expensive, this methodology is difficult to 
reproduce worldwide and the acquisition of content in this 
manner is restrictive.

In 2004, Balogh and coworkers recorded surgical steps 
through microscopic images obtained using a robotic mi-
croscope.6 The authors discussed the possible superiority 
of the QTVR stereoscopic format over commonly ob-
tained videos of surgeries and questioned the real benefit 
of using virtual reality in medical pedagogy.6 This method 
involves the application of an expensive technology, and 
no pedagogic evaluation was carried out.

In 2006, Balogh and colleagues created a volumetric 
model using a multilayered construction process that al-
lows the user to explore the surgical field in the surgical 
procedure sequence, without the tactile experience. The 
authors assume that future refinements of this technology 
will enable the replacement of anatomical dissections.5,6

Our study differs from previous works in many aspects. 
First, it uses an affordable methodology to generate in-
teractive, immersive, and stereoscopic content that can be 
easily acquired, customized, and adapted to specific edu-
cational purposes. It does not require expensive tools, and 
it can be applied in lectures or accessed remotely on per-
sonal computers by fellows, residents, and students. It can 

be easily adapted to display contents of other fields, such 
as neurology, radiology, pathology, etc.

Additionally, this study was specifically designed to 
evaluate pedagogic effectiveness of interactive stereo-
scopic virtual reality methods. This method was found to 
be pedagogically superior when compared with traditional 
teaching methods (p < 0.05). We have found no studies 
that evaluate the use of stereoscopic virtual tools in teach-
ing microscopic or macroscopic neuroanatomy.

pedagogic evaluation
Lamperti et al. created a multimedia teaching resource 

from 2D photographs of encephalon cuts and dissected 
structures, which were scanned using Asymetrix multi-
media software, composing a computerized atlas and a 
laboratory manual with a clinical cases section.27,28 Stu-
dent performance was not affected by the use of this com-
puter program when compared with conventional teach-
ing methods; however, it allowed the students to follow 
directions and learn proactively, without the instructor’s 
assistance. Nonetheless, content was not interactive or ste-
reoscopic.

Elizondo-Omaña and coworkers compared a group of 
students who received traditional instruction using text-
books, laboratory for the study of anatomical specimens, 
and conventional lectures to a group of students who re-
ceived the traditional teaching associated with virtual re-
ality laboratory classes.14 The authors found that the tradi-
tional method supplemented by the virtual laboratory is a 
superior option to the traditional method alone.14

Levinson and colleagues evaluated the effects of learn-
ing controlled by the student versus controlled by a pro-
grammer.30 When using multiple images or key pictures, 
better performance was noted when the programmer used 
key images, leading to the conclusion that multiple images 
may impair learning.

Our study consisted of multiple images; nonetheless, the 
sequence of images is interpreted by the brain as a contin-
uum, since it is presented as a nonlinear movie. The mul-
tiple images are fused, giving the impression of a single 
object that can be moved continuously, without interrup-
tion, though from different perspectives. Besides allowing 
the user to visualize the image as a single solid object, the 
sum of various individual images paired nonlinearly en-
ables the visualization of the structures and their anatomi-
cal correlations and allows the user to literally navigate the 
image during class.

This work also demonstrates that stereoscopy (Group 
3) does not add any benefit when compared with the inter-
active nonstereoscopic group (Group 2). It seems that the 
capability to virtually “manipulate” the brain, examining 
with continuity its multiple perspectives and structural re-
lationships, is more important pedagogically than offering 
the stereoscopic perspective. However, stereoscopy is an 
important resource to better understand the anatomical 
relationships rather than improving the memorization of 
the structure names. Nonetheless, this particular aspect of 
learning has not been addressed in this study. Another ex-
planation for the lack of advantage of stereoscopy may be 
related to the anatomical structures being studied (limbic 
system) rather than to intrinsic limitations of the method. 
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A new study is under way to examine this issue in a differ-
ent anatomical data sets.

A gap regarding the application of virtual reality in-
teractive stereoscopic methodology in medical pedagogy 
remains.25,26,31–35 We think this methodology may help to 
fill this gap in combining easy application, immersivity, 
interactivity, and stereoscopy at affordable costs.

conclusions
This study presents the process of implementing and 

evaluating an interactive, photorealistic, and stereoscopic 
tool for the study and teaching of neuroanatomy. The meth-
od presented a significant gain of knowledge and pedagog-
ic yield when compared with the traditional techniques.
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