
From Chalkboard, Slides, and Paper to e-Learning: How
Computing Technologies Have Transformed Anatomical
Sciences Education

Robert B. Trelease*

Division of Integrative Anatomy, Department of Pathology and Laboratory Medicine, Center for the Health
Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California

Until the late-twentieth century, primary anatomical sciences education was relatively
unenhanced by advanced technology and dependent on the mainstays of printed text-
books, chalkboard- and photographic projection-based classroom lectures, and cadaver
dissection laboratories. But over the past three decades, diffusion of innovations in com-
puter technology transformed the practices of anatomical education and research, along
with other aspects of work and daily life. Increasing adoption of first-generation personal
computers (PCs) in the 1980s paved the way for the first practical educational applica-
tions, and visionary anatomists foresaw the usefulness of computers for teaching. While
early computers lacked high-resolution graphics capabilities and interactive user interfa-
ces, applications with video discs demonstrated the practicality of programming digital
multimedia linking descriptive text with anatomical imaging. Desktop publishing estab-
lished that computers could be used for producing enhanced lecture notes, and commer-
cial presentation software made it possible to give lectures using anatomical and medical
imaging, as well as animations. Concurrently, computer processing supported the deploy-
ment of medical imaging modalities, including computed tomography, magnetic reso-
nance imaging, and ultrasound, that were subsequently integrated into anatomy
instruction. Following its public birth in the mid-1990s, the World Wide Web became
the ubiquitous multimedia networking technology underlying the conduct of contempo-
rary education and research. Digital video, structural simulations, and mobile devices
have been more recently applied to education. Progressive implementation of computer-
based learning methods interacted with waves of ongoing curricular change, and such
technologies have been deemed crucial for continuing medical education reforms, provid-
ing new challenges and opportunities for anatomical sciences educators. Anat Sci Educ 9:
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INTRODUCTION

The past three decades have seen remarkable, evolutionary

changes taking place in the way anatomical sciences and

health sciences have been taught and learned. Perhaps most
the most fundamentally influential educational technology

factor in all of these changes has been the rise of the inte-
grated circuit digital computer and its integration into a vast
range of devices and instruments (Campbell-Kelly and
Aspray, 2003; Swedin and Ferro, 2007), from the now-
ubiquitous personal computers (PCs) to medical imaging sys-
tems to smartphones, tablets, and other mobile devices. Use
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of PCs and more recent mobile computing devices has
become an integral part of learning and everyday life for stu-
dents and faculty, also including a range of common applian-
ces, tools, and clinical services that less visibly depend on
embedded computer technology.

In the mid- and late-twentieth century, anatomical sciences
education in Western medical schools was typically character-
ized by assigned textbook readings and lectures variably
accompanied by chalkboard diagrams and projected photo-
graphic slides, from which students could make their own
handwritten notes. Each hour of lecture topic was variably
associated with hours of active learning laboratory exercises:
regional cadaver dissections for gross anatomy, microscope
slides studies of cells and tissues for microscopic anatomy,
and nervous system slides, preserved specimens, and brain
dissections for neuroanatomy (Collins et al., 1994; High-
tower et al., 1999; Drake et al., 2002; Heylings, 2002; Blake
et al., 2003; Hildebrandt, 2010).

This “status quo” was progressively and gradually chang-
ing concurrently with the rise of educational computing in
the anatomical and health sciences, beginning in the early
days of the “mainframe” computer and the first experiments
in “computer-aided instruction,” through early multimedia-
based “computer-assisted learning,” to currently pervasive
“e-learning” (electronic learning) with Web-based online
learning resources, social networking, and multimedia on stu-
dent laptops and other mobile devices. This diffusion of inno-
vations in learning technologies over the last three decades
also occurred concurrently with the decline of free-standing,
research-based anatomy departments and graduate programs
at major universities, along with reductions in anatomical sci-
ence education curricular hours accompanying waves of med-
ical education curricular reform (Drake et al., 2002, 2009;
Papa and Vaccarezza, 2013; Drake et al., 2014). And while
the lattermost programmatic changes have been largely
rationalized by principles of adult learning and humanistic
clinical practices, e-learning methods have become practical
tools and integral means for implementing and supporting
new curricula.

Anatomists have played vital roles in introducing and pro-
moting many of these computer-based educational innova-
tions, along with defining important visions for the future of
instructional technologies within health sciences education
(e.g., Walsh and Bohn, 1990; Rosse, 1995; Spitzer and Whit-
lock, 1998; McNulty et al., 2000; Sugand et al., 2010). To a
large degree then, their successful establishment of new inte-
grated anatomical e-learning methods has been instrumental
in the ongoing success and continuity of rapidly evolving
multidisciplinary health sciences education. In fact, recent
United States and Canadian consensus reports prescribing fur-
ther medical education reforms have focused on the impor-
tant roles of new technologies in achieving the newest
recommended clinical practice and educational changes (Sko-
chelak, 2010).

The purpose of this review is to provide historical perspec-
tives on the important technological innovations and result-
ing computer-based learning applications that have shaped
anatomical sciences education as we currently know it. Pub-
lished evidence will also be reviewed for the introduction and
educational effectiveness of exemplary specific learning
resource innovations. The overall account will be initially
framed in the context of socio-behavioral research-based
diffusion of innovations (DOI) theory (Rogers, 2003), which
provides useful practical insights into principles, factors, and

time-course for the success or failure of new technology
implementations, applicable to learning resources as well as
to new curricula.

These principles will remain important in the future:
Because effective e-learning is not that old globally, having
appeared and evolved rapidly during the careers of senior
anatomists, it will continue to evolve significantly with newer
technologies and curricula (Friederichs et al., 2014; Masic
et al., 2014; Cook et al., 2015; Fletcher et al., 2015). A per-
suasive call has also gone out for making appropriate use of
e-learning methods with other active methods of comprehen-
sive structural learning, in modernizing anatomical education
for newer integrated curricula aimed at training competent
healthcare professionals (Sugand et al., 2010; Skochelak,
2010). And as will be illustrated in this review, earlier inno-
vations beget later new inventions and uses, so understanding
the foundations of existing technologies may facilitate the
development of useful new applications, resources, and meth-
ods for learning.

DIFFUSION OF INNOVATIONS 101:
SOCIAL PROCESSES IN ADOPTION OF
NEW TECHNOLOGIES

As originally formally defined by Rogers (1962, 2003), diffu-
sion is the complex process by which acceptance of an inno-
vation is communicated to members of a social system over a
period of time, via specific channels (Mahajan and Peterson,
1985). The four highest level variables operating in the diffu-
sion process are the characteristics of the innovation itself,
communications channels, social systems, and time. The prin-
ciples of diffusion of innovations apply not only to processes
of adopting new hardware technologies but also to dissemi-
nation of new practices (e.g., problem-based learning and
healthcare; Greenhalgh et al., 2005), ideas, philosophies, and
ways of thinking (e.g., about “cognitive load” of multime-
dia). The following brief review of the essentials of diffusion
of innovations frames and provides usable context for anato-
mists who want to understand important factors involved in
the ongoing acceptance and integration of new computing
technologies, software applications, and learning practices
(for additional discussion, see Trelease, 2006b). See Figure 1
for a graphic summary integrating the most important ele-
ments of diffusion of innovations, including a depiction of
innovation adoption curves (bottom cell, right column).

Innovations need not be absolutely or objectively new,
although they may be perceived as new by individual adopt-
ers at given times. Thus, we will see that some innovations
may take many years and redevelopment of desirable fea-
tures, software, or learning practices in order to achieve pop-
ular acceptance and mass adoption in new contexts (e.g., the
first development of tablet computers in the 1990s and their
widespread public acceptance only after 2010).

“Innovation” and “new technology” are frequently con-
sidered synonyms, and one can further distinguish hardware
and software aspects of innovations. Although the hardware
aspects of a new technology may be apparent, the social
aspects and practical consequences of its software design and
usage are typically much less obvious. Potential adopters of
an innovation need persuasive information about the new
technology in order to be convinced that adopting it will
have positive consequences for them. Communications of fac-
tual information about an innovation’s characteristics are

584 Trelease



thus crucial in facilitating adoption decision making, and
depending on the social system (e.g., first year medical stu-
dents), early adopters (i.e., “techies”) may not be the best
communicators of a new technology’s desirability and useful-
ness. The overall rate of adoption in a population is a com-
plex function of the combined interactions of the nature of
the innovation, its innovativeness, diffusion communications,
and the social system, and this is most often depicted as a
sigmoid distribution curve of adoptions over time (see Fig.
1). For example, this can be seen in data on U.S. and global
adoption of smartphones and tablets (Rainie and Poushter,
2014; Zickuhr and Rainie, 2014).

A few additional aspects of diffusion of innovations are rel-
evant to adoption decision making (Rogers, 2003), particularly
in an educational environment. Adoption decisions may be
consensus-based, such as mass public adoptions of smart-
phones, and these may also emerge from evidence-based, dem-
ocratic governance methods (e.g., faculty voting for curricular
change). Alternatively, decisions may be authority-based, such
as when an administration or executive committee decides to
change a curriculum without polling the faculty at large.

In practical terms, the anatomical sciences literature has
born witness to the application of many innovations over the
past centuries, frequently serving to further facilitate their dif-
fusion. For example, the publication of Andreas Vesalius’ De

Humani Corporis Fabrica Libri Septem (Vesalius, 1543) had
a historically acknowledged role in facilitating the more
widespread acceptance of learning by human dissection
(O’Malley, 1964). In publishing journal articles and books on
new educational applications of technology, anatomists have
thus played essential and continuing roles in early adoption
of a variety of innovations and in facilitation of their
diffusion.

From the late twentieth century through the present day,
the greatest innovations have resulted from the application of
digital computer technologies that have not only transformed
the activities of daily life, but also the practices of science,
medicine, and surgery. As we shall review in the following
sections, successive innovations in personal computing hard-
ware and software, the development of the Internet and the
World Wide Web, and medical imaging modalities have pro-
vided the most significant major tools and methods crucial to
present day technology-enhanced clinically oriented anatomi-
cal sciences education. Other innovations in video, simula-
tions, and new computing platforms have built on earlier
technologies for other synergistic learning enhancements.

A conceptual diagram of the complex relationships
between these innovations is shown in Figure 2. In the left
column, readers will find the primary innovations that will
be covered in the following major sections, such as the digital

Figure 1.

Crucial factors, variables, and relationship affecting the diffusion of innovations. For the diffusion curves illustration embedded in the right-bottom cell, note that
the X-axis (elapsed time) abbreviations are explained by the left-adjoining center column cell listing Individual Adopter types. For the Y-axis, N indicates number
of individuals adopting a given innovation.
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computer, hypertext/hypermedia, video, radiography, et
cetera. The next two columns map secondary and application
innovations that will be discussed in section text, such as the
personal computer and mobile computing, respectively, for
digital computers. Finally, in the right-most column are
mapped learning application innovations, such as e-learning
and m-learning with digital computers. Figure 2 also includes
vector lines depicting the some of the most important ‘verti-
cal’ interrelationships between primary, secondary, and appli-
cation innovations and their learning applications.

Of these core computer-based innovations, the Web has
had the deepest and the most broad-based influences, serving
as a common, integrating multimedia framework and perva-
sive universal distribution medium that has been applied to
all aspects of life and contemporary education, including
gross, microscopic, and neurological anatomy and embryol-
ogy. And while each anatomical sub-discipline has had its
own specific combination of needs for development of crucial
and effective tools (i.e., high resolution macroscopic and
three-dimensional digital imaging for gross, large scale micro-
scopic image management for histology, macroscopic, micro-
scopic, and clinical image processing for neuroanatomy, etc.),

the following overview will focus on the development of the

most important shared innovations applied to anatomical sci-

ences education, along with sub-discipline-specific examples.

Finally, these core computer-based and e-learning technolo-

gies and methods also apply broadly to the successful overall

delivery, management, and continuing evolution of contem-

porary health sciences education and multidisciplinary curric-

ula at institutional and global levels.

THE FIRST WAVES: COMPUTER-
ASSISTED INSTRUCTION AND EARLY
EDUCATIONAL EFFORTS

The first concentrated efforts at putting digital computers to

work in education commenced in the 1960s, when the mas-

sive, multi-cabinet “mainframe” system was the primary

computer platform. Because mainframes were expensive,

large, and required special-purpose, air conditioned facilities,

early educational computing projects and research operated

out of a relatively small number of well-funded universities.

These earliest efforts were first referred to as “computer-

Figure 2.

Concept map diagram of important primary and secondary innovations and their relationships to learning enhancement applications in anatomical sciences
education.
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assisted instruction” (CAI; Larkin and Chabay, 1995), and
given the existing technology’s computational and limited dis-
play capabilities, they focused most productively on automat-
ing text-based approaches to mathematics and language
instruction in primary and secondary schools (Suppes and
Morninstar, 1969).

These early studies, whether they were labeled CAI,
computer-based instruction/learning (CBI/CBL) or computer-
aided learning, demonstrated some success in facilitating
text-based student learning of numerical and linguistic princi-
ples and content almost entirely on-machine, but they were
also criticized and viewed as of limited utility and practical-
ity. At this time, there were no significant applications of
CAI to contemporary anatomical learning, which was as
much dependent on visual imagery as on text-based concep-
tual descriptions and relationships (i.e., in photographic lec-
ture slides, chalkboard diagrams, textbooks, and notes). In
retrospect, it has been observed that success of early com-
puter learning methodology was limited by the cost and spe-
cial infrastructure needed to disseminate from mainframe
computers to remote school sites. And by the 1980s, CAI
was still largely viewed as a research subject rather than as
an accepted learning tool. But remarkably, the legacy phrase
“computer-assisted instruction” and related variant terms for
computer-enhanced learning have endured, being cited in a
variety of anatomical and health sciences education papers
through the 1990s and into the early 21st century (Pradhan
and Dev, 1993; Toth-Cohen, 1995; Lambert et al., 1997;
Nieder et al., 2000; McNulty et al., 2004; Cod and Choud-
hury, 2011).

THE RISE OF PERSONAL COMPUTING
AND ITS EDUCATIONAL
APPLICATIONS

The 1980s brought a major computing innovation and mod-
ern cultural paradigm shift away from mainframes, with the
introduction of the first generation of compact and affordable
integrated circuit microcomputer-based PCs that could be
used as “information appliances” at home and in classrooms.
For a number of reasons, however, diffusion of new desktop
PCs into classrooms and homes proceeded slowly for over a
decade. Useful commodity and instructional software
required custom-programming, thorough assessment, and
proof of educational value before schools and families would
commit significant funds for mass adoption. Furthermore,
these early PCs had very primitive graphics displays, virtually
excluding the use of video or photographic images, such as
those now integrated into contemporary gross and micro-
scopic anatomy lectures and laboratories.

The earliest anatomy teaching applications focused on
computer based enhancements of more conventionally organ-
ized text-based information such as lecture notes (Russell
et al., 1986) and atlas-like compendia. When it became possi-
ble to interface and to drive optical videodisc and later CD-
ROM (Compact Disc Read-Only Memory) with PCs, the first
early multimedia learning applications were developed (Fris-
bie, 1993; Gest and VanBiervliet, 1994; Downing, 1995; Kim
et al., 1995; Myers et al., 1995; Pawlina and Olson, 1996;
Gosling et al., 1997). Excellent examples of this early
approach to multimedia learning were seen with the Slice of
Life videodiscs, large-scale, indexed collections of video-
resolution anatomical and histological images that were used

by academic developers for dual-monitor structural displays
alongside dedicated text-based instructional programs (Sten-
saas, 1993; Webber et al., 1995). The Vesalius Project at Col-
orado State University and the Human Dissection Project at
the University of Florida represented early efforts that used
videodiscs to create an interactive anatomy atlas (McCracken
and Spurgeon, 1991) and interactive manual for human dis-
section (Rarey et al., 1995).

The first substantial use of computers in regular anatomy
instruction emerged in the 1990s, with improvements in PC
color graphics and interactive user interfaces for operating
systems like Microsoft Windows 3.1 and Apple Macintosh
operating system (OS). Perhaps the biggest single early soft-
ware advance was the release of the PowerPoint presentation
program with the mass-market Microsoft Windows 3.0 oper-
ating system and Microsoft Office software suite in 1990,
which made it possible to give a slide-based lecture with a
PC and video projector (n.b., PowerPoint had been originally
released as “Presenter” on the Macintosh computers in
1987). Beginning in the mid-1990s, PowerPoint presentations
began to replace then-current 35 mm slides and overhead
projector transparencies as standard lecture media, with eas-
ily composed text pages supporting embedded high-resolution
anatomical and histological images, as well as custom anima-
tions and attention-focusing slide transitions (Cook, 1998;
Carmichael and Pawlina, 2000). Successive improvements in
presentation software have supported embedded video and
hyperlinking to online media (see below), as well as more
recent audience response system (ARS) methods (Alexander
et al., 2009; Wait et al., 2009; Hoyt et al., 2010) that effect
adult education recommendations for turning transmissive
lecture teaching into interactive learning experiences (Nieren-
berg, 1998).

An early use of a locally networked client-server structural
database for teaching anatomy was the Digital Anatomist
Browser at the University of Washington (Brinkley et al.,
1993). Macintosh client computers provided students with
in-laboratory access to a wide range of anatomical data,
images and animation stored on a central server. The Digital
Anatomist project presaged the use of the World Wide Web
for distance learning (Dailey et al., 1994) and involved its
developers in the National Library of Medicine’s proposal
competition for the Visible Human Project (see following
sections).

HYPERTEXT, HYPERMEDIA, AND THE
BIRTH OF THE WORLD WIDE WEB

In addition to the progressive improvements in PC graphics
and displays in the later 1980s and early 1990s, the growth
of the global Internet supported direct information exchange
between networked computers and set the stage for the next
big transformative innovation: the World Wide Web. Greatly
expanding individual PCs’ capacity for widely and easily
sharing information, the Web integrated earlier concepts of
“hypertext” and “hypermedia” to give users “point and
click” interactive access to linked and indexed text and high-
resolution multimedia files on networked server computers in
initially scientific and academic settings.

During the 1930s, American engineer Vannevar Bush ori-
ginated the idea of a machine (“memex”) for managing asso-
ciatively linked textual information and images, supporting
“wholly new forms of encyclopedias” (Bush, 1945). Although
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his memex was never produced in the pre-digital computer
era, Bush’s ideas stimulated later inventors, like Theodor
Holm “Ted” Nelson, an American pioneer of information
technology who developed a computer system model using
associatively linked content that he first called “hypertext”
and hypermedia” (Nelson, 1965). Working independently on
his own NLS hypertext system at Stanford Research Institute,
Douglas Carl Englebart, an American engineer and Internet
pioneer demonstrated a “hypertext” editing interface to the
public for the first time, in what was effectively the birth of
the first word processor (Tweney, 2008).

In 1980, English computer scientist Sir Timothy John
Berners-Lee (also known as “TimBL”) created an early hyper-
text database system somewhat comparable to a present day
“Wiki” or “Wikipedia”. In 1989, Berners-Lee proposed and
later prototyped a new hypertext project for an Internet-
linked server information-sharing facility to be used by physi-
cists working at the European Center for Nuclear Research
and other academic institutions: He called it the “World
Wide Web” (Berners-Lee and Calliau, 1989). The ‘Web era’
effectively began in 1994, with the first public release of PC-
based Web browser software–NCSA Mosaic (Berners-Lee
et al., 1994).

Among the first bioscientific applications for the early
Web was the organization and distribution of data for the
Visible Human Project (Ackerman, 2002; Baatz, 2004) and
the Visible Embryo Project (Doyle et al., 1996), supported by
the United States National Library of Medicine. Such projects
reciprocally influenced the evolution of publicly released and
commercial Web browser software, by necessitating the
development of “plug-in” software modules to support the
display of high-resolution cross-sectional images (Doyle
et al., 1996; Williams and Doyle, 1996). Other aspects of the
Visible Human Project are covered in a separate section
below.

Among the earliest published proposals for medical educa-
tional uses of the Web were those of Kruper et al. (1994),
McEnery et al. (1995), and Bradley et al. (1995). As previ-
ously noted (Bradley et al., 1995; Brinkley et al., 1997), the
Digital Anatomist Project was the first to provide extensive
anatomical learning resources for networked access in the
form of an interactive atlas with extensive three-dimensional
(3D) animation and digital video. In addition to the Visible
Embryo Project in the United States (Doyle et al., 1996), a
consortium of United Kingdom universities soon made their
human embryology databases accessible via the Web (Aiton
et al., 1996). In an early telemedicine/tele-education applica-
tion, a collection of temporal bone, laryngeal, skull and sinus
sections was made accessible in a Web-based “virtual labo-
ratory” for otolaryngology learning (Alusi et al., 1997).

McNulty et al. (2000) integrated Web server statistics
with individual user surveys and examination performance to
assess use of Web-based CAI in their human structure course,
and their data indicated no correlation between computer lit-
eracy and overall CAI utilization levels. Use of course-related
CAI corresponded strongly with ongoing course content, indi-
cating curricular effectiveness, although use of tutorials con-
tent coincided more with impending in-course examinations.
Discrepancies between recorded usage data and student sur-
vey reports also put in question the validity of self-reported
student survey usage data. This report is particularly notable,
because it represents the first large-scale Web-based instruc-
tion utilization study performed (in 1998) at the highly com-
puterized facility at Loyola University Stritch School of

Medicine, that was designed specifically around Web-based
technologies aimed at enhancing independent and group-
based learning. In a subsequent report, McNulty et al. (2002)
also demonstrated reduced printing of course materials and
lowered reproduction costs with Web-based distribution of
instructional resources, the first educational evidence for
computer media effectively replacing legacy paper content.

It is worth noting that publication of articles concerned
with the primary application of Web resources to anatomical
sciences education has declined greatly in post-millennial
years, in favor of accounts of a variety of newer “second gen-
eration” applications and learning methods effectiveness stud-
ies that implicitly and explicitly depend on pervasive,
prevailing Web usage. Over a decade since its inception, the
Web has become the ubiquitous infrastructural technology
underlying the conduct of contemporary post-secondary and
pre-professional education, and indeed, the functions of daily
life in a society increasingly dominated by the use of smart-
phones and mobile technologies (e.g., banking, commerce,
shopping, travel, social networking, etc.).

MEDICAL IMAGING: COMPUTED
TOMOGRAPHY, ULTRASOUND, AND
MAGNETIC RESONANCE

Modern clinical imaging, as increasingly integrated into ana-
tomical sciences and medical education, has its roots in both
legacy cross-sectional anatomy and in the development of
radiology. Cross-sectional anatomy has had an ancient and
important role in understanding the internal three-
dimensional structure of the body. Leonardo da Vinci may be
considered the ‘father’ of cross sectional anatomy, although
his unpublished illustrations were only disclosed centuries
later (Bay and Bay, 2009). Cross-sectional images were defin-
itively published in Andreas Vesalius’ widely distributed De
Humani Corporis Fabrica Libri Septem (e.g., Quarta Septimi
Libri Figura, brain/head section, page 635; Vesalius, 1543).
Over the last few centuries, printed representations of cross-
sections were commonly used for learning anatomy, along
with preserved cadaveric sections (Ghosh, 2015).

In pursuing the production of comparably precise and
accurate images of living human anatomy, several lines of
research in the early decades of twentieth century contributed
to the foundation of the clinical discipline of radiology. Fore-
most among these historically was the development of X-ray
imaging with analog tomography, then ultrasound, followed
by computed tomography (CT) and magnetic resonance
(MR) imaging. William Hendee’s authoritative monograph
(Hendee, 1989) comprehensively reviewed research and
development contributing to analog tomography, ultrasound,
CT, and MR imaging, and we summarize some of the most
important of the innovative concepts and technical precedents
in the next several paragraphs.

Tomography

Shortly after Wilhelm R€ontgen’s 1895 discovery of X-rays
(Roentgen rays) and fluoroscopy, the first principles of
tomography or body section radiography were invented, for
producing selective images of structures according to their
depth (Littleton and Littleton, 1996). Credit for the first
effective tomography patent (1922) has been historically

588 Trelease



given to French physician Andre-Edmund-Marie Bocage, and
between 1921 and 1936, separate research efforts yielded dif-
ferent mechanical approaches to producing such conventional
“analog” tomographic machines. These had in common
Bocage’s elements of a moving X-ray source positioned over
the stationary subject, aimed at a moving recording plate
(film) below the subject. Structures above and below the
focal plane of the X-ray beam were blurred or effaced from
the final image, leaving only a planar section of the body in
sharp focus (Hendee, 1989).

Advanced analog X-ray tomographs remained in clinical
use until the 1980s, when computed tomography supplanted
them with more detailed sectional imaging. The first princi-
ples of CT were propounded by American neurologist Wil-
liam H. Oldendorf in 1961, based on producing transmission
images of a rotating object by irradiation with a stationary
gamma source and sensing with a fixed radiation scintillation
detector. Separately, a South African American physicist Allan
McLeod McCormick developed advanced computational
methods for calculating attenuation of radiation doses, lead-
ing to cross-sectional projection imaging. Sir Godfrey New-
bold Hounsfield, an English electrical engineer, developed the
first images of biological specimens with a fixed, collimated
X-ray scanner with a motorized lathe bed specimen holder
and fixed scintillation detector. This design led to the develop-
ment of a clinical scanner that first imaged a frontal lobe
tumor in 1971. By 1972, 70 patients had been examined with
the new CT scanner, with results reported at the Annual Con-
gress of the British Institute of Radiology (Ambrose and
Hounsfield, 1973). Subsequent widespread publicity and
acclaim led to commercial investment in four successive genera-
tions of scanner development (Hendee, 1989; Kalender, 2005).

Hounsfield and McCormick subsequently shared the 1979
Nobel Prize for Physiology or Medicine (Richmond, 2004), and
CT was established as the first medical technology to employ a
digital computer as an integral component of both data acquisi-
tion and analysis. Michael Vannier and colleagues at the Mal-
linckrodt Institute of Radiology in Saint Louis (Vannier et al.,
1984) pioneered high efficiency computational methods for pro-
ducing 3D reconstructions of hard and soft tissue structures
from high resolution CT images, setting precedents for clinical
assessments and surgical planning, as well as for rapid produc-
tion of anatomical 3D models (as will be discussed further,
below). Computed tomography continues to be a mainstay of
clinical cross-sectional imaging, of particular value in dense tis-
sue (e.g., bone) imaging and trauma assessment.

Ultrasonography

Historically, the development of ultrasound imaging com-
menced soon after the discovery of X-rays, based on physics
research into the piezoelectric effect: Electrical pulsing of a
crystal produced resonance and emission of an ultrasonic
burst that could be transmitted through fluid and reflected by
dense objects (Donald, 1974; Hendee, 1989). Early ultra-
sound transducers were first used for bottom-sounding and
detection of obstacles by ships, and refinements for military
use resulted in the development of sonar (sound navigation
and ranging) during World War II (Hendee, 1989). Following
the war, military pulse-echo equipment became available to
biomedical researchers, and early work at the University of
Minnesota attempted to measure wall thickness in normal
and cancerous stomach, as well studying the detection of

breast tumors. Early post-war surplus scanners required that
patients and specimens be immersed in water. Following the
development of non-quartz crystal ultrasound transducers
and improvements in image quality, immersion tanks were
eventually replaced in the 1960s with the use of compound
contact scanners with mechanical transducer arms, facilitat-
ing clinical applications.

By the 1970s, original analog echo signal outputs and
black-and-white oscilloscope displays were supplanted by ana-
log then digital (computerized) scan converters that recorded
and displayed gray scale images, for significant advances in
image quality and clinical usefulness. Subsequent improvements
in transducers, arrays, and computer image processing and the
application of Doppler frequency shift data (for detection of
fluid movement) raised the clinical diagnostic utility of ultra-
sound to unexpected levels (e.g., fetal organ blood flow meas-
urements). Current portable 3D/4D ultrasound scanners are
easily capable of generating dynamic 3D images of a fetus in
utero, as well as allowing students self-discovery of heart valve
functions and abdominal organs in anatomy teaching laborato-
ries (Ivanusic et al., 2010; Griksaitis et al., 2012; Sweetman
et al., 2013; Torres et al., 2016).

Magnetic Resonance Imaging

Early physics research on the magnetic properties of elemen-
tal nuclei produced seminal discoveries in the 1920s and
1930s, progressively leading to the development of nuclear
magnetic resonance (NMR) technology. It was established
that a variety of nuclei, including hydrogen protons, each
behaved differently in a strong magnetic field, in a manner
characterized by the magnetic moment of its component par-
ticles. When placed in a strong magnetic field and pulsed
with radio waves, specific nuclei would emit characteristic
radio frequency signals. This was the basis for the develop-
ment of NMR spectroscopy, which could identify the chemi-
cal constituents of samples for chemical and biochemical
analyses (Rabi et al., 1938a,b).

In the early 1970s, amidst work on applying NMR to
analysis of tumor biology, efforts began to reconstruct images
from resonance signals. Extremely strong and uniform mag-
netic fields were found to be necessary for forming useful
images from nonhomogeneous body structures (Lauterbur,
1973), and in 1974, the first image of a mouse was made,
highlighting a cervical fracture. By 1977, field-focusing NMR
technology (FONAR) yielded the first image of a human
thorax. Additional improvements in speeding sampling, scan-
ning, and data acquisition and in generating extremely high
intensity magnetic fields in the late 1970s paved the way for
the first clinical trials and commercially successful clinical MR
imaging scanners in the early 1980s. Use of cryogenic supercon-
ducting magnets, differentiating tissues by pulse sequence relax-
ation constants (T1 and T2), and multi-slice scanning helped
establish MRI as a new standard for 3D soft tissue imaging.

Michael Vannier and colleagues at the Mallinckrodt Insti-
tute of Radiology in St. Louis, MO pioneered multispectral
MRI image analysis for automatically differentiating and seg-
menting soft tissue types (Vannier et al., 1985), as well as
volumetric (voxel-based) 3D reconstruction techniques (Van-
nier et al., 1988). The latter also produced the first clinically
based dynamic 3D models that formed a new non-invasive
diagnostic modality: electrocardiographic (ECG) gated MRI of
the heart. More recent advances in MR image acquisition and
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analysis (e.g., diffusion tensor) have facilitated the rise of ‘func-

tional imaging’ (Savoy, 2012), providing the potential for other

new clinical and educational resources that dynamically dem-

onstrate the molecular-level functionality of imaged tissues.

Imaging and Anatomical Sciences Education

With the evolution of health sciences curricula over the last

three decades, increasing emphasis has been given to teaching

anatomy integrated with clinical imaging, in order to prepare

new graduates with the ability to recognize diagnostically sig-

nificant morphology in radiographs, CT, MR, and ultrasound

imaging (Sugand et al., 2010). In 2006 the Mayo Medical

School in Rochester, MN, was one of the first in the United

States to provide first-year gross anatomy students with volu-

metric high-resolution CT scans that were obtained from their

dissection laboratory cadavers after embalming (Bartholomai

et al., 2006, 2007; Wiesmann et al., 2007). Using a Web-based

computer system, students could examine radiologic features

and relationships in cadavers that they dissected, in addition to

accessing de-identified clinical examinations of body donors

(Bartholomai et al., 2006, 2007; Wiesmann et al., 2007). Some

newer curricula have also proactively integrated medical imag-

ing with anatomy components based on principles of clinical

relevance (Kish et al., 2013), especially in active laboratory set-

tings that emphasize reinforcement of three dimensional ana-

tomical relationships (Zumwalt et al., 2010). It has also been

argued that teaching ‘living anatomy’ with medical imaging

can supplant cadaver laboratories (McLachlan, 2004;

McLachlan et al., 2004).
The anatomical sciences education literature has begun to

accumulate evidence evaluating clinical imaging use and effi-

cacy in learning. Initial studies using cross-sectional anatomy

images in conjunction with corresponding CT and MR sec-

tions demonstrated high cognitive load for more complex

learning resources (Khalil et al., 2008), but they were unable

to show positive effects on structural recognition in testing

with radiological images. Lufler et al. (2010) found that stu-

dents who used computer-accessible CT scans of class cadav-

ers had significantly higher overall performance on

examinations and on spatial relationship questions, compared

with those who did not use the CT scan resources.
Initial studies of ultrasound (US) usage in teaching

“living” thoracic anatomy demonstrated strongly positive stu-

dent evaluations for effectiveness in teaching, reinforcement

of lecture concepts, and stimulation of student interest (Iva-

nusic et al., 2010). A controlled comparison between the use

of prosections and live ultrasound imaging in learning cardiac

anatomy suggested that there were no significant differences

in student examination performance between the separate

study modalities (Griksaitis et al., 2011). Jamniczky et al.

(2015) have reported that the need to learn technical aspects

(“knobology”) of ultrasound negatively affected student per-

ceptions of its utility in learning anatomy for physical exami-

nation, suggesting additional efforts were needed to provide a

basic technical introduction to US prior to living anatomy

sessions. Finally, Jurjus et al. (2014) have provided evidence

that with minimal training, anatomists can teach living anat-

omy using US just as well as clinicians in human anatomy

courses. This study as well as others (Pawlina and Drake,

2015) encouraged anatomists to undergo US training and to

utilize it in the gross anatomy curriculum.

THE VISIBLE HUMAN PROJECT AND
INTERNET-BASED HUMAN
STRUCTURAL IMAGING DATABASES

The Visible Human Project (VHP; Spitzer and Whitlock,
1998; Ackerman, 2002; Baatz, 2004) was another innovation
related to historical cross-sectional anatomy, funded by the
National Library of Medicine (NLM). This Project was origi-
nally conceived as part of the federally funded High Perform-
ance Computing and Communications (HPCC) program of
the National Information Infrastructure Initiative (NII; also
known popularly as “the Information Highway”), aiming to
share patient data and medical images, to establish telemedi-
cine projects providing consultation and medical care to
patients in rural areas, and to facilitate development of
advanced computer simulations of human anatomy for train-
ing in “virtual surgery” (Lindberg, 1995; Spitzer and Scher-
zinger, 2006). “Virtual anatomy” and simulation will be
covered further in the next Section.

The original Visible Male data set included 1,878 digitized
photographic cross-sections cut at 1-mm intervals, and the
Visible Female included 5,189 sections at 0.33-mm intervals
(Spitzer and Whitlock, 1998). The digital image set for Visi-
ble Human Male and Female was truly massive for the era:
the digitized photographic sections plus MRI and CT data
occupy about 64 gigabytes (GB), approximately the amount
of data that can be contained on 16 digital video discs
(DVDs). The NLM facilitated further development of these
data by distributing them freely under license. Numerous
research projects and commercial development programs
exploited the early VHP data, with the initial result that
many health science schools developed their own local
instructional resources for teaching cross-sectional anatomy.
The NLM also produced AnatLine, a prototype Internet
database “portal” that allowed search engine-based access to
Visible Human images and 3D renderings (Strupp-Adams and
Henderson, 1999). Jastrow and Vollrath (2003) have pro-
vided a comprehensive review of online, CD-ROM, and
print-based anatomy teaching resources produced using VHP
digitized section images; other VHP-derived 3D teaching
applications will be considered more specifically in the fol-
lowing section on simulation and modeling.

Separately, the University of Washington Digital Anato-
mist Project expanded its archive of digital cross-section data,
derived 3D images and animations for access via the Web
(Brinkley et al., 1997; Rosse et al., 1998). The Digital Anato-
mist Project provided early free access to digital atlases and
demonstrated several accomplishments in visualization and
artificial intelligence (Brinkey et al., 1997; Wong et al.,
1999). Stanford University developed its own Visible Female
Project, by using a 32-year-old donor body, intended to be a
better source for baseline anatomical data for a reproductive-
age woman than the 59 year-old NLM Visible Female donor.
From these data, they produced a virtual-reality model of the
pelvic region, “Lucy,” intended for research and instructional
use (Heinrichs et al., 2004).

Other comparable international efforts were launched fol-
lowing the original Visible Human Project, including the Visi-
ble Korean Human (Kim et al., 2002; Shin et al., 2015;
Kwon et al., 2015), the Chinese Visible Human (Liu et al.,
2013). These projects implemented technical improvements
over the U.S. VHP data sets, including finer sectioning (1 mm
for the Korean efforts), ‘gapless sectioning’ (the original
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Visible Male was cut into three longitudinal parts, leaving
gaps), and smaller pixel size for the digital images (Korean
data supporting imaging of structures as small as 0.2 mm)
(Dai et al., 2012). It has been recognized that key anatomical
and clinically relevant structures might not be identifiable for
modeling and simulation tools based on VHP sections
(Kraima et al., 2006).

Funded as part of the National Science Foundation’s Next
Generation Internet initiative the Visible Embryo Project
could easily be considered the offspring of the NLM-funded
Visible Human Project. More than just a data set develop-
ment effort, the Visible Embryo Project aimed to develop a
structured and organized collaborative database resource
(Doyle et al., 1996). The project was headed by investigators
from George Mason University, with digitization of the Car-
negie embryo collection hosted by the Human Developmental
Anatomy Center at the US Armed Forces Institute of Pathol-
ogy (AFIT).

The Human Brain Project was another large-scale U.S.
federally funded structural database initiative directed at inte-
grated neuroanatomical imaging and brain-mapping, and
along with a number of other institutions, the University of
Washington Digital Anatomist Project also participated in its
various objective programs (Toga and Thompson, 2001;
Brinkley and Rosse, 2002). Early products included interac-
tive brain atlases (Brinkley and Rosse, 2002), and later work
by Nowinski and colleagues (Nowinski, 2008; Nowinski
et al., 1997, 2009, 2012a, 2012b; Nowinski and Chua 2013;
Nowinski et al., 2015) greatly advanced the objectives of
functionally integrating imaging-based stereotaxic-precision
atlases into clinically useful tools for neuroradiology and
neurosurgery.

THREE-DIMENSIONAL SIMULATION,
MODELING, AND VIRTUAL REALITY

Virtual reality (VR) is a popular contemporary term that
applies variably to the use of computers to create interactive
simulated environments, or in the case of gross anatomy, to
create 3D structural simulations. The modern technology had
its roots in three-dimensional (3D) imaging and early interac-
tive displays of environmental panoramas, followed by the
development of the first flight simulators in the late 1960s.
Initial systems used advanced computer graphics to produce
3D displays, typically with viewing systems that displayed
different image perspectives to the left and right eyes to simu-
late stereoscopic image perception.

Photographic 3D viewing technologies had been popularly
available since Victorian times, with the availability of the
handheld stereopticon viewer and the popular stereoscopic
postcards. During the mid-twentieth century, the public
became familiar with the updated Sawyer View-Master stere-
opticon that used discs (“reels”) containing left/right pairs of
35 mm. photographic slide transparencies, as well as rare
popular cinema films that relied on viewers wearing polarized
or red/blue glasses (Patterson, 2009; Gruber, 2105). The clas-
sic Bassett collection (Bassett, 1952–1963) was an outstand-
ing, extensive set of Sawyer’s View-Master Kodachrome slide
reels of beautiful anatomical dissections with descriptive text/
books.

The author fondly remembers special anatomy lecture ses-
sions from the later 1970s, when medical school classes,
equipped with polarized viewing glasses, could view regional

anatomy from Bassett slides (Bassett, 1952–1963) displayed
on the lecture hall screen by a View-Master optical projector
(Stereocraft Engineering Co., Portland OR). Concerted efforts
to create 3D “virtual anatomy” using computer-based stere-
oscopy began in the early 1990s (Trelease, 1994, 1996,
1998), and this technology has been more recently advanced
with improvements in high resolution and high speed com-
puter displays (Nguyen and Wilson, 2009).

An alternative method of producing interactive 3D images
relies on two-dimensional object movement to provide an
illusion of 3D structure (Trelease et al., 2000; Trelease and
Rosset, 2008). Interactive, freely rotating digital image mod-
els can be produced with 3D modeling software, digital pho-
tography of physical specimens (Nieder et al., 2000), or
thanks to current software incorporating methods pioneered
by Vannier et al. (1984, 1985, 1988), by processing of CT
and MRI clinical imaging data sets (Trelease and Rosset,
2008; Trelease and Nieder, 2013). Initial efforts were also
made to support Web-based 3D anatomical models with vir-
tual reality modeling language (VRML) (Warrick and Fun-
nell, 1998). Early evidence indicates that individual student
spatial visualization ability and problem-solving strategies
affect learning with such 3D modeling learning resources
(Nguyen et al., 2014).

A variety of projects have produced practical simulation
and virtual anatomy tools as envisioned by the Visible
Human Project leaders (Spitzer and Whitlock, 1998; Spitzer
and Scherzinger, 2006), and a number of these have been
tested in anatomical sciences education. Brenton et al. (2007)
reported on the development and implementation of prospec-
tive, multi-institution collaboration (WebSET Consortium) to
develop “Web3D” gross anatomy learning resources based on
the VHP dataset, multi-source volumetric modeling, and
medical imaging. Kim et al., (2007) detailed the design and
development of a deformable human kidney model for a
mixed reality laparoscopic surgical simulation system using
VHP data and data from in vivo pig kidney mechanical prop-
erties. Nguyen and Wilson (2009) developed a detailed
dynamic musculoskeletal head model as a test bed for educa-
tional applications, and separately (CT) scanned cadaveric
larynx specimens were used to create 3D models for learning
assessment (Hu et al., 2009). Sergovich et al. (2010) created
an explorable 3D model of the female pelvis, complete with
pelvic viscera and perineum.

In the neuroanatomical domain, VHP data-based 3D vir-
tual models have been used to test the effectiveness of con-
ventional lectures and laboratory learning (Brewer et al.,
2010), to aid in learning conceptual relationships for tempo-
ral lobectomy (de Ribaupierre and Wilson, 2012), and to
develop Web-based cranial nerve simulations (Yeung et al.,
2011, 2012). More recently, an interactive virtual 3D model
of the eye, extraocular muscles, and cranial nerve innervation
was developed from VHP data, with presentation and user
interface design consistent with extraneous load reduction
and principles of cognitive load theory (Allen et al., 2015).

The Visible Korean Human data has been used to produce
an online data set supporting browser-based self-learning and
testing of sectional anatomy knowledge following lecture pre-
sentations (Shin et al., 2011). Separately, adaptive self-
explorative study with ‘interleaved’ (combined/alternating)
whole and sectional neuroanatomy using VHP and MR
imagery was shown to be more efficient for learning than a
basic transfer (whole then sectional) learning paradigm (Pani
et al., 2013).
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The U.S. VHP dataset has also spawned several commer-
cial 3D applications, including the Visible Dissector, which
has been used in studies showing comparable effectiveness to
prosections and models for medical students learning cross
sectional anatomy (Donnelly et al., 2009). However, careful
searches of the PubMed database by this author (through
August 2015) reveal relatively few studies of the educational
efficacy of VHP-derived educational tools, beyond the origi-
nal accounts of their development, and it is difficult to assess
the scope of implementation of such anatomical simulation
resources in U.S. medical school curricula.

Among existing reports, however, it is worth noting that
enhanced learning of anatomical relationships has been
reported for virtual 3D model use in introductory neuroanat-
omy (Brewer et al., 2012), for cranial nerves (Yeung et al.,
2012), and for internal structure of the brainstem (Pederson
et al., 2013). Positive learning effects have also been reported
with the use of 3D models of the larynx (Hu et al., 2010;
Tan et al., 2012). Furthermore, initial studies on the use of
virtual models in undergraduate laboratories, with and
instead of prosections, have demonstrated no significant
learning differences between the different exclusive and com-
bined modes, although emergent influences on social context
and learning behaviors indicated the need to evaluate the
effects of technology beyond the impact on knowledge gain
(Hopkins et al., 2011).

Computer 3D structural modeling software has also sup-
ported the creation of physical objects, and this combined
application has been put to commercial use for over two dec-
ades in “rapid prototyping” of industrial parts. For example,
automotive engine parts can be modeled in computer-assisted
design (CAD) software, and the resulting metal or plastic
objects can be produced by a computer-controlled milling
machine or “3D printer”. Three dimensional modeling and
“high-end” 3D printing have also come into more wide-
spread use for surgical planning and prosthetic reconstruction
over the last two decades, pointing to their relevance for
medical education (Fasel et al., 2016). With the post-
millennial advent of much less expensive “consumer-grade”
3D printers, anatomical education applications have begun to
appear (Drake and Pawlina, 2014; Vaccarezza and Papa,
2015). Li et al. (2012) described 3D reconstruction and rapid
prototype production of anatomical corrosion casts of human
specimens. McMenamin et al. (2014) reported on the meth-
ods, accuracy, costs, and educational applicability of 3D
printing of cadaver specimens and other structures, such as
limbs, vessels, and inner ear. O’Reilly et al. (2016) have
reported on the fabrication and assessment of vascularized
lower limb models for teaching anatomy and for femoral ves-
sel access training. More recent trials and applications of 3D
printing for teaching anatomy are evaluating their educa-
tional efficacy (AbouHashem et al., 2015; Balaya et al.,
2016; Fasel et al., 2016; Kong et al., 2016; Lim et al., 2016).

“Augmented reality” is a more recent elaboration on con-
cepts of interactive digital 3D environments that uses primar-
ily mobile devices to access additional information or images
superimposed on real-time displays of environmental images
(Zhu et al., 2014). For example, mobile phones could be
used to display “pop-up” information on dissected specimens,
and Google Glass could be used to show medical imaging or
physiological monitoring tracked to a surgical field. These
“assistive” technologies could be considered in their early
infancies, still subject to major research and applications
development.

Beyond macroscopic and gross anatomical 3D simulation,
digital and panoramic imaging methods have also been
applied to histological images, giving rise to “virtual slides,”
digital histology collections, and “virtual microscopy”
(Downing, 1995; Trelease et al., 2000; Roth et al., 2015). A
variety of different software programs have been used to scan
and to “stitch together” arrays of digital images to produce
very large, seamlessly scrolling and zooming “virtual slides”
of individual histological specimens. Braun and Kearns
(2008) reported that virtual microscopy provided increased
learning efficiency and student collaboration in learning
pathology, compared with prior optical microscopy methods.
Mione et al. (2013) provided controlled cross-over study evi-
dence that student learning performance with virtual micros-
copy is comparable to that with optical microscopy, for
acquiring image-based knowledge in medical histology. Digi-
tal slide collections and “virtual microscopy” have become
more widely accepted for use in microscopic anatomy labora-
tory instruction (Pinder et al., 2008; McBride and Prayson,
2008; Gatumu et al., 2014), and a recent American Associa-
tion of Anatomists’ survey showed that a majority of
respondent institutions used virtual microscopy alone or in
conjunction with microscopes (Drake et al., 2014).

VIDEO: FROM ANALOG TO DIGITAL
AND THE YOUTUBE ERA

Transmitted analog video became a commercial commodity
in the 1950s, and videocassette recorders achieved wide-
spread consumer acceptance by the late 1970s. The availabil-
ity of professional and standardized high-quality consumer
video equipment supported the development of educational
applications, with early proposals for anatomy examinations
(Markee et al., 1965) and teaching surface anatomy (Gasser,
1972). Early commercial videos were distributed in professio-
nal 1=2” tape format for limited institutional use or in 1=4”
VHS (video home service) format for consumer video
recorders.

Following the development of digital video recording and
file standards in the late 1980s and early 1990s, anatomy
content began to show up in additional evolving formats.
First was the optical videodisc (or simply videodisc), which
as previously noted, was used for storage and playback of
still images before high-resolution computer graphics displays
were widely available in PCs (Frisbie, 1993; Stensaas,1993;
Webber et al., 1995; Downing, 1997). In some educational
applications, videodiscs were replaced by CD-ROM discs
which contained digital video recordings (Van Biervliet and
Gest, 1995), in addition to still images and text-based data.
The Anatomy Project from the University of Arkansas was
an unusual, comprehensive multi-volume multimedia series
that was initially available on video cassettes, videodiscs, and
CD-ROMs (Gest and Van Biervliet, 1993).

However, with the development of the CD-sized digital
video disc (DVD) and accompanying digital video disc read-
only memory (DVD-ROM) formats, multimedia content
began to appear more commonly on larger-capacity and
higher image-resolution DVDs and DVD-ROM. During these
periods and until the new millennium, it was common for
“high-end” commercial anatomy, histology, and neuroanat-
omy textbooks to include additional media in enclosed CD-
ROM or DVD-ROM discs. This practice was progressively
eliminated in favor of providing URLs (uniform resource
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locater links) and codes for accessing multimedia content on
publisher Web sites, although CD-ROMs may remain in use
for laboratory support and other learning applications
(Adamczyk et al., 2009).

By the late 1990s, the first generation of practical
network-streamed digital video formats and software were
released, making it possible to distribute anatomical sciences
education videos via Web servers (Guttmann, 2000). These
early video formats and standards were still dependent on rel-
atively slow contemporary PC display capabilities and net-
work/server transmissions speeds, with practical constraints
on playback file size, screen resolution, video frame rates and
program lengths, limiting their immediate diffusion and pro-
moting transitional use of hybrid digital media implementa-
tions (Bacro et al., 2000; Ernst et al., 2003).

However, with continuous progressive improvements in
network, data compression, and digital video format technol-
ogies, Web-distributed high resolution video became a practi-
cal tool for broader use in integrated anatomy instruction by
the mid-2000s (Tabas et al., 2005; DiLullo et al., 2006; Kos-
tas et al., 2006). With the further continuing development of
high-definition (HD) digital television (HDTV), recent gener-
ations of PCs, laptops, and mobile devices became capable of
playing back downloaded and networked-streamed HD video
files.

Dr. Robert D. Acland from the University of Louisville
developed a comprehensive, narrated video anatomy atlas of
lightly embalmed dissections that was originally distributed
in 1995 on VHS cassettes, and these exquisite videos have
successfully migrated through DVD media to a commercially
published Web archive service with interactive examination
resources (Acland, 2015). Acland’s videos remain in active
elective use by students, and a recent study reports that Aus-
tralian clinical level medical students rated them very highly
among available computer-assisted learning resources (Barry
et al., 2016; Choi-Ludberg et al., 2016).

One of the more common current applications of video at
the institutional level has been for capturing lectures.
Although current post-constructivist curricula tend to devalue
lectures as inefficient “transmissive learning,” many schools
favor recording PowerPoint lectures, often with pointer
movements and audience interactions, for later use by stu-
dents (Bacro et al., 2013). This practice may also be used to
facilitate later use and repurposing of prior lecture time in
curricular “inversion” or class “flipping” or “blending”
(Nieder and Borges, 2012; Trelease, 2015).

As an alternative, more polished educational videos can be
developed de novo from storyboards and scripts, existing
multimedia content, and digital video production systems. A
singular, controlled, institutional study of such “off-line
developed” anatomy instructional videos indicated that,
although availability of these resources did not affect overall
class performance on anatomy and radiology examinations,
student using these resources scored significantly higher (Sax-
ena et al., 2008).

Outside of a single institution, instructional videos have
also been organized along with other multimedia learning
resources in collaborative educational database archives (Shef-
field, 2006). Prime examples include the Health Education
Assets Library (HEAL; Candler et al., 2003) and its successor,
MedEdPORTAL (Reynolds and Candler, 2008; Reilly, 2011;
Shankar, 2014). In the latter instance, it has been provoca-
tively proposed that basic undergraduate anatomical training

might be conducted solely online using MedEdPORTAL
content (Anderson, 2010).

In 2005, YouTube (YouTube, LLC., San Bruno, CA), the
first widely adopted, free-access Web-based digital video serv-
ice commenced operations, and the current public market-
place includes this and more than a dozen popular,
competing services worldwide, that can be used for free or
private channel educational video distribution. YouTube has
since been identified as a potential distribution point and
source of publicly available teaching videos (Jaffar, 2012),
but preliminary studies investigating its utility in learning sur-
face anatomy (Azer, 2012) and cardiac anatomy (Raikos and
Waidyasekara, 2014) have indicated a current lack of appro-
priate quality content. However, a more recent Irish institu-
tional poll of second year medical and radiation sciences
students reported that about 78% of students used Web-
based platforms to source YouTube as their primary source
for anatomy related video (Barry et al., 2016).

“THE WEB 2.0 ERA”: SOCIAL MEDIA
AND LEARNING MANAGEMENT
SYSTEMS

Near the turn of the second millennium, the commercial
Internet ‘bubble burst’, and many Web-based business enter-
prises (“dot-coms”) failed, following initial successes and
promise during the 1990s. Those Web-based businesses that
survived and flourished during the early 2000s demonstrated
an evolved set of functional capabilities labeled “Web 2.0”
by informatics publisher Tim O’Reilly (O’Reilly, 2009). As
exemplified by commercial giants like Amazon (Seattle, WA),
eBay (San Jose, CA), and YouTube (San Bruno, CA), success-
ful Web 2.0 businesses employed dynamic page architectures
driven by online databases that generated individualized con-
tent for users, with an underlying design that promoted their
social networking (communications) focused on collaborative
resource sharing (and consumption).

As opposed to original, custom-built, discipline-oriented
pre-millennial Web sites supporting lectures and laboratory
content, course management systems (CMSes) were devel-
oped to support multiple courses uniformly at the institu-
tional level using Web 2.0 methods. Also known as learning
management systems (LMSes), these large-scale Web server-
based applications suites used database programming meth-
ods to provided password-protected student and faculty
access to individual class calendars, learning materials, multi-
media, online evaluation/examination, group email, and other
social networking functions that facilitated collaborative
work on structured coursework (Trelease, 2015). Early exam-
ples of LMSes/CMSes included Blackboard (Blackboard Inc.,
Washington, DC), WebCT (University of British Columbia,
Canada), and Angel (Angel Learning Inc., Indianapolis, IN),
which were later subsumed by the corporate expansion of
Blackboard (Blackboard Inc., Washington, DC). Examples of
open source systems (that could be freely obtained and cus-
tomized by academic users) included Moodle (Moodle HQ,
West Perth, West Australia), Drupal (Drupal Association,
Antwerp, Belgium), and WordPress (WordPress Foundation,
Houston, TX).

Learning management systems have become essential
standards for core curriculum support in most American uni-
versities and medical schools. Evolving LMS systems have
also incorporated interoperability with more recent
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commercial social networking tools that have become popu-
lar with Web-savvy students, including Facebook (Facebook,
Inc., Menlo Park, CA), (for personalized resources and online
“friend” networking), Twitter (Twitter, Inc., San Francisco,
CA), (for instant, compact-size text messaging), and YouTube
(YouTube, LLC., San Bruno, CA), (for user-produced digital
video sharing).

Anatomists have demonstrated a variety of ways to sup-
port different aspects of learning activities with these systems.
Krippendorf et al. (2007) used their LMS to log anatomy
practical examination answers for automated grading.
DiLullo et al. (2009) used LMS-delivered online case tutorial
videos to facilitate integration of basic sciences and clinical
competencies leaning in group-based discussion sessions.
Wright et al. (2012) used a learning management system to
integrate Web-based learning with collaborative team exer-
cises using commercially available three-dimensional anatom-
ical virtual dissection software and anatomical models, in a
dissection-free approach to undergraduate anatomy classes.
Pinelle et al. (2012) developed University of Saskatchewan
Radiology Courseware (UCRS) to allow cased-based medical
imaging to be easily integrated into existing course content of
existing LMSes.

MOBILE DEVICES AND NEWER
EMERGENT LEARNING
TECHNOLOGIES

Handheld computers, more portable devices for personal
computing, were first introduced commercially in the early
1990s with the Apple Newton MessagePad (Apple Corp.,
Cupertino, CA). At the time, with its relatively large size
(4.25” 3 7.25”), stylus-driven user interface, and gray scale
graphics, it was widely viewed as too clumsy for widespread
acceptance. Smaller personal digital assistants (PDAs) soon
appeared and achieved a measure of acceptance with simple
calendaring, note taking, and address book functions that let
them serve as pocket-carried personal information manage-
ment tools that integrated with PCs. Even with limited text
and graphics display sizes, PDAs became relatively popular
for business use by the end of the 1990s, and more powerful
models were integrated with cellular telephones.

By the early 2000s, however, PDA sales began a pro-
nounced decline, coincident with the rise of similarly compact
personal media players (e.g., the iPod) that could also display
HTML formatted text. By the mid-2000s, a new class of
‘smartphones’ was developed that combined PC-like comput-
ing power with higher resolution graphics, multimedia player
capabilities, and PDA-like personal information management
programs. Furthermore, with cellular telephone and wireless
(WiFi) network connectivity and more powerful browser soft-
ware, such mobile devices provided ready access to Web-
based information resources and applications. Smartphones
have been viewed as a paradigm-shifting ‘second platform’
for personal computing and scientific use (Nature, 2010),
with computational power comparable to prior generation
supercomputers.

Early interest was directed toward using PDAs (Menon
et al., 2004; Trelease, 2004), then media players (Trelease,
2004) and smartphones (Trelease, 2008) for developing appli-
cations intended for mobile use by current generation medical
students and residents (Barrett et al., 2004). All these hand-
held “mobile devices” were viewed as promising learning

tools for millennial generation students, due to their self-

adoption as “carry-everywhere” personal technology that

could be used in ways consistent with the “nomadic” experi-

ence of medical education in multiple locations and clinical
settings.

In 2010, a new class of mobile computing “tablets” was
introduced (e.g., Apple iPad), essentially reinventing the

1990s Apple Newton with a thinner, high-resolution color

touch screen display and smartphone-like capabilities. Tablets

experienced very rapid diffusion within the first few years

(Zickuhr and Rainie, 2014), establishing a new type of

mobile applications that combined PC-class program capabil-

ities with touch screen interactivity. Furthermore, after

mobile tablets stimulated the simultaneous great rise of popu-

larity in e-books, most major anatomical sciences textbooks

have become available in e-book formats. The more wide-

spread distribution of curricular resources in tablet-

compatible formats (e.g., PDFs) has thus made it possible for

students to carry with them an entire library of multimedia

learning resources on a single device. The current evolution

of larger smartphones (“phablets”) and smaller tablets (e.g.,
7” screen size) has placed a very powerfully array of net-

worked personal educational technology in student coat

pockets, usable for ubiquitous learning even in clinical

locations.
Mobile computing tablets have been deployed for a vari-

ety of anatomical sciences educational applications, including

primary histology and neuroanatomy learning, anatomy labo-

ratory exercises, and 3D “virtual anatomy” structural simula-

tions. Tablets have been used to support self-learning

resources for integrated, longitudinal medical clerkships (Ale-

gria et al., 2014). Interactive hyperlinked anatomy reviews

for medical student surgical clerkships have been successfully

distributed as smartphone and tablet applications, e-books,

and Web-based content for PCs and tablets, starting in 2010

(Trelease, 2016). Tablets have also been used for guiding dis-

section laboratories (George et al., 2013; Mayfield et al.,

2013). Stewart and Choudhury (2015) created and assessed
the learning efficacy on the iPad of an interactive e-book for

undergraduate self-guided learning about the brachial plexus.

Traser et al. (2015) have reported on successful medical stu-

dent use of smartphones in anatomy laboratories, for access-

ing online information about prosections tagged with digital

QR (quick response) hyperlink codes.

DISCUSSION

E-Learning Promises

As we have seen historically, successful innovations become

accepted for widespread use, and newer developments con-

tinue to arise to supplant existing technologies. Thus, as med-

ical and educational technologies and curricula continue to
evolve, there will be new opportunities for introducing inno-

vations that can potentially enhance student learning in ana-

tomical sciences education. Consistent with the principles of

diffusion of innovations, careful proactive consideration of

practical learning applications for new computing technolo-

gies, appropriate educational design and implementation

planning (Gagn�e, 2004), well designed assessments, and pub-

lication and dissemination of project findings can facilitate

the successful curricular integration of new, educationally

sound, computer-based resources, and methods.
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Initially, however, innovations diffuse primarily on per-
ceived utility, without immediate objective proof that they
are more effective than previously existing technologies (Rog-
ers, 2003). This principle applies definitively to spreading
educational research-based reforms in medical curricula (Col-
liver, 2002b), and incremental cycles of discovery and refine-
ments of inventions are also consistent with the historical
advances of basic sciences and technology (e.g., development
of modern medical imaging; Hendee, 1989). Beyond the fun-
damentally compelling promises of technology-enhanced
learning with theoretical educational principles and practices,
however, there remain a variety of practical challenges, con-
cerns, and caveats for the prospective development and
implementation of computational innovations in education.

Efficacy Studies for Specific Learning
Applications

In the current era, anatomical sciences education is being
characterized by increasing research on the effectiveness of
adult learning with different resources, methods, paradigms,
and learner behavioral characteristics, and such work increas-
ingly seeks to define objective effectiveness for innovations in
computer-enhanced instruction. As with other new medical
education learning practices (Colliver and Cianciolo, 2014),
however, e-learning innovations in anatomical sciences educa-
tion currently suffer from a scarcity of statistically reliable
learning efficacy evidence. In fact, much legacy medical edu-
cation research has been questioned for methodological flaws
and “quasi-experimentation” with “questionable validity”
(Colliver and McGaghie, 2012).

This clearly leaves more challenging work yet to be done,
especially if there is to be reliable and definitive characteriza-
tion of how specifically rapidly spreading new educational
technology applications affect learning, positively and/or neg-
atively, especially given seminal findings on the individual
learning styles of diverse post-millennial student populations
(McNulty et al., 2006; DiLullo et al., 2011; Nieder et al.,
2011). Furthermore, a comprehensive review of the available
literature and databases (Cook et al., 2010) has indicated
that due to diversity of implementations, Web-based learning
cannot be treated as a single entity in evaluations of educa-
tional efficacy. Learning resources designs and implementa-
tion methods must thus be comprehensively assessed
individually in specific educational contexts in order to deter-
mine how and when they may be used most effectively.

Well-designed computer-based lectures have already been
widely adopted as better than legacy photographic slide-
based presentations, especially with enhancements like ani-
mations, videos, and 3D simulations, which has supported
methods for the elimination of legacy anatomy lectures
(Nieder et al., 2011; Nieder and Borges. 2012). Yet other
evidence suggests that computer note-taking and attention-
splitting in legacy lectures contribute to superficial
understanding of presented information (Mueller and Oppen-
heimer, 2014). While constructivist learning theories, still
dominating newer health sciences curricula, have devalued
authoritative lectures and other ‘transmissive’ teaching in
favor of student self-learning (Kirschner et al., 2006), a more
recent trend favors ‘flipping’ or ‘inverting’ classes by requir-
ing before-class use of online lecture resources, with class
time then reserved for activities like discussions of covered
content or related problem- or team-based learning exercises

(Moraros et al., 2015). This process can be facilitated by
using legacy lecture recordings (Nieder and Borges, 2012;
Trelease, 2015), providing a transition pathway for further
reducing anatomy class time in reforming integrated, multi-
disciplinary curricula.

For more than a decade, computers have also been put to
work in medical student teaching laboratories (Lamperti and
Sodicoff, 1997), for accessing Web-based learning resources
and dissection instructions, hyperlinked structural information,
clinical imaging, and interactive self-assessments (Rarey et al.,
1995, 1997; Augustine et al., 2003; Reeves et al., 2004; Tre-
lease, 2006b; Bartholmai et al., 2007; Adamczyk et al., 2009;
Greene, 2009; Mayfield et al., 2013; Wessels et al., 2015).
Despite early expressed concerns and cautions (Cahill and
Leonard, 1997), computers have been used to support legacy
dissection laboratories, and with demands for continuing
reductions in curricular time, e-learning methods have become
an integral part of streamlined, mixed resources sessions inte-
grating prosections, plastinated specimens, skeletal materials,
clinical imaging modules, structural simulations and self-
learning modules (Johnson et al., 2012; Kish et al., 2013).

Large-scale human structural databases, medical imaging,
and digital microscopy systems have certainly facilitated
development and deployment of novel simulation resources
that have no definitive proof supporting their effectiveness in
completely replacing legacy laboratory methods, although
their use has been advocated increasingly in the context of
reduced curricular time, despite concerns about increased
“cognitive load” affecting learning (Fraser, et al., 2015; Wil-
son, 2015). Furthermore individual student spatial visualiza-
tion ability and problem-solving strategies appear to affect
learning with 3D simulations (Nguyen et al., 2014).

Digital slide collections and “virtual microscopy” have
become accepted for use in histology laboratory instruction
(Gatumu et al., 2014) and their use is growing in U.S. medi-
cal schools (Drake et al., 2014). Currently, however, only
sparse and mixed evidence supports the learning efficacy of
many of these innovations in microscopic, neurological, and
gross anatomy, particularly 3D models and simulations
(Nicholson et al., 2006; Brewer, 2012; Khot et al., 2013;
Pawlina and Drake, 2013, Yammine and Violato, 2015),
even as evolving courses and curricula come to rely on them,
backed by increasing demands of technologically savvy mil-
lennial students (Sugand et al., 2010; Wallace et al., 2012;
Han et al., 2014).

Integrated “dissection-free” laboratories supported by
computers are spreading slowly, paving the way for cadaver-
free “virtual laboratories” in health sciences curricula, as
well as in other undergraduate programs (Wright, 2012;
Attardi and Rogers, 2015), despite continuation of legacy
debates (Aziz et al., 2002; Guttmann et al., 2004; Patel and
Moxham, 2006) on the value of dissection in medical school
gross anatomy laboratories. While some early proponents of
“cadaver-free anatomy” acknowledged a lack of evidence on
its educational impact on the medical learning of anatomy
(McLachlan, 2004; McLachlan et al., 2004), student exami-
nation evidence (e.g., NBME

VR anatomy results) has been
more recently cited in support of retaining cadaver dissection
laboratories (Nwachukwu et al., 2014). Surgeons and other
scholars have continued to insist that, for the sake of
adequate clinical grounding, use of computer resources
should not replace cadaver dissections (Older, 2004; Biasutto
et al., 2006; Sheikh et al., 2016). Recent evidence also sug-
gests that models, hands-on dissection, and “virtual
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dissection” may have different laboratory learning conse-
quences for individual students (Lombardi et al., 2014), with
potential functional advantages still remaining for learning by
dissecting.

However, despite a more recent survey showing retention
of dissected cadaver laboratories by a majority of responding
American medical schools (Drake et al., 2014), these prac-
tices might well be considered still at risk in institutional
“authority-based” diffusion decisions (Rogers, 2003) for
newer reformed curricula demanding additional reductions in
basic sciences and anatomy class time. Despite the prevalence
of existing clinically integrated anatomy in problem-centered
adult learning curricula, continuing administrative and curric-
ular devaluation of preclinical anatomy learning will be
driven by prominent national calls for further streamlining of
legacy medical school basic sciences instruction in favor of
more adaptive individualized learning, early clinical immer-
sion, and clinical competencies-focused training with standar-
dized outcomes (Cooke et al., 2010; Irby et al., 2010;
Skochelak, 2010). And remarkably, use of new technology is
widely seen as vital to achieve these new curricular reforms
(Skochelak, 2010). In this continuing context, future preclini-
cal anatomical sciences education programs might come to be
dominated by exclusively online lectures, and streamlined,
integrated self-learning methods laboratories with minimal
student use of prosected cadavers, the lattermost being
reserved for later clinical specialties rotations and residency
training.

As another part of the culturally evolving use of personal
technologies, mobile devices, smartphones, and tablets have
had widespread adoption for general use due to popular
demand (Wallace et al., 2012; Hardyman et al., 2013; Zick-
uhr and Rainie, 2014). However, sparse early evidence sug-
gests that their varied applications in different disciplinary
and health sciences curricular contexts may be more or less
successful for enhancing learning in specific contexts (Barrett
et al., 2004; Alegria et al., 2014; Lumsden et al., 2015; Nie-
haus et al., 2015). This may depend on a number of varia-
bles, including design comprehensivity and ease of use of
software, the importance of mobile learning components in a
specific curricular element (class or clinical setting), and indi-
vidual student learning styles and preferences.

Additional behavioral correlates of mobile technology use
should be considered. In some contexts, growing concerns
have been raised that casual, reflexive smartphone use can
provide substantial distraction from ongoing learning activ-
ities (Papadakos, 2013). There is a growing literature on the
problematic use of and dependency on smartphones and
Internet connectivity (Sansone and Sansone, 2013; Roberts
et al., 2014), leading to the development of assessment tools
and treatment protocols for what has been termed “addictive
behaviors”. Furthermore, concern has been expressed about
the cognitive efficiency of attention-splitting and media multi-
tasking (Minear et al., 2013), and such in-class behaviors
have been shown to be as source of distraction for nearby
peers, as well as for the primary users of laptop computers
(Sana et al., 2013).

Such concerns raise questions about cost-to-benefit rela-
tionships for promoting mobile learning methods in medical
curricula that emphasize the support and promotion of stu-
dent multitasking for necessary clinical tasks in disciplines
such as surgery and emergency medicine (Bongers et al.,
2015). Other evidence suggests that undergraduate students
have differing capacities for efficient multitasking, and that

earlier preclinical teaching methods may be inefficient during
multitasking clinical work (Dubrowski et al., 2014).
Together, all these factor suggests that overall effectiveness of
specific m-learning methods will be a complex function of
individual student multitasking capabilities and technology
usage behavioral parameters, specific learning task contexts,
and learning resource design features. For the foreseeable
future, mobile devices might best be institutionally supported
as self-selected alternative devices for preclinical online learn-
ing content (e.g., documents, Web pages, and videos; Tre-
lease, 2015), and as resources for on-service situated learning
in clerkships and residencies (Trelease, 2016).

Additional Concerns and Challenges

In a different, academic politics context, due to the aforemen-
tioned strong continuing promotion of a spectrum of adult
learning theories and demands for greater use of educational
technologies (Irby et al., 2010; Skochelak, 2010) in mandated
reforms, administrative and curricular governance fiats may
promote the elimination of legacy course activities in favor of
other specific e-learning methods, with questionably sufficient
evidence for learning efficacy (Colliver, 2002b; Colliver and
Ciancolo, 2014). Legacy constructivist learning principles
(Mayer, 1999; Colliver, 2002a; Reigeluth and Carr-Chellman,
2009), which advocate turning “the sage on the stage” to
“the guide on the side”, may still be used to justify the elimi-
nation of remaining lectures in favor of required, “outside
class hours” online viewing of video presentations or pod-
casts, for “inverted” or “flipped” courses that conserve class
time for interactive discussions or small group clinical prob-
lem-solving.

As an alternative, “blended” classes might simply reduce
specific course hours in favor of student use of asynchronous
(“do it when you like”) e-learning resources, online discus-
sion forums, simulations, and online evaluations and exami-
nations, although evidence suggests that simplistic
asynchronous practices are often inconsistent with good
learning principles and knowledge retention (Barbeau et al.,
2013). For hard-working anatomical sciences educators who
have labored in the last decades to design and to implement
creative integrated, multimodal-multidisciplinary new curric-
ula (Churchill et al., 2009; Johnson et al., 2012) in dwindling
anatomy departments, such increasing substitution of online
learning for in-person course time may point to future further
losses of academic privileges, “scholarly turf,” personal con-
trol over teaching methodologies, and faculty appointment
stature.

Another increasing concern for faculty, related to the
growing use of online learning resources associated with cur-
ricular change, has been media-popularized assertions that
online digital video lectures and discussion boards can eco-
nomically and satisfactorily substitute for in-person university
classes (Reich, 2015; Sharrock, 2015). This has been most
recently exemplified by published proposals to use “massive
open online courses” (MOOCs) as substitutes for in-person
required coursework in medical schools, with widely shared
content presented by selected “elite” instructors (Prober and
Khan, 2013). Remarkably, in a medical education era domi-
nated by principles of active adult learning, MOOCs largely
promote entirely online learning at the low-yield, passive
“lecture tip” of the “interactive learning pyramid,” with lim-
ited network-based student-faculty interaction and with
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questionable results (Reich, 2015). Nevertheless, fiscally chal-
lenged American and global universities are being pressed to
graduate more students in less time at lower cost by adopting
“revolutionary” curricula (Christensen and Eyring, 2011) and
by using more extensive online learning and MOOCs for
degree credit (Prober and Khan, 2013; Rivard, 2013; Yoder,
2013) although it is unclear whether such online courses are
more efficacious and less expensive than traditional courses
(Cook, 2014; Sharrock, 2015).

Consistent with concerns about academic privileges, but
mindful of the scholarly principles of sharing knowledge and
innovations, faculty must be aware of the need for defending
their academic rights and intellectual property, when produc-
ing effective e-learning media that might potentially be expro-
priated by free distribution or be used to supplant active
faculty teaching roles. Universities and health sciences schools
have varying individual policies for how much and how edu-
cational multimedia development may count for academic
advancement and tenure (if it still exists for teaching anato-
mists at some institutions). Faculty may also be exposed to
copyright violation challenges for unsecured embedded
media, given free sharing of content by students via the Inter-
net. Faculty members own the copyrights to their lectures at
many U.S. universities, so e-learning materials should display
copyright notices appropriate to their institutions, with
appropriate acknowledgements and permissions for other
published materials. Furthermore, for reducing the risks of
expropriation and copyright violations, e-learning materials
should be secured on a password-protected Web site or on a
virtual private network.

CONCLUSION

As previously discussed, current technologies and their imple-
mentations will continue to evolve, and innovations can be
applied more effectively to education as methods, practices,
and educational research mature with time. In this context, it
is worth considering what future innovations might reason-
ably be coming, based on the discussed educational technol-
ogy evolution trends.

It might be seen that progressive improvements in VR and
3D printing technologies will lead to their greater, more selec-
tive adjunctive use in preclinical and clinical education set-
tings, particularly in environments that have limited access to
cadaver or plastinated specimens. However, despite the
ongoing success of virtual microscopy methods for learning
histology, histopathology, and neuroanatomy, high-cost
whole-body virtual dissection systems and entirely student-
centered exploratory learning seem unlikely “to carry the full
load” of preclinical anatomy laboratory instruction, particu-
larly with large and increasing class sizes. Furthermore given
contemporary findings on the learning efficacy of various
basic learning and imaging methods, along with increasing
data on diversity in individual students’ cognitive abilities,
learning styles, and behavioral preferences, it seems most
likely that mixed learning methods anatomy laboratories will
prevail with minimal allotted course time, with the progres-
sion of continuing curricular reform.

In the face of prescribed progressive curricular reforms
accelerating students’ more rapid entry into clinical training
and further compressing preclinical basic sciences time, leg-
acy didactic introductory anatomy, and histology course time
might also be supplanted by institutional or commercial
online content, if not by college undergraduate course

requirements for medical school admission. Certainly, the

continued spread of flipped and blended courses can be

expected to extend to remaining, more “conventional” pre-

clinical and clinical curricula.
Evolving mobile technologies will persist, and they may be

increasingly used for delivering asynchronous and “just-in-

time” learning resources to “nomadic” students, particularly

with continuing reforms in clinical curricula and widespread

mobile access to clinical information systems. However, given

previously reported negative learning and social aspects of

smartphone use (e.g., distraction), some special educational

efforts may need to be directed toward “behavioral learning”

for students who grew up with habitual diversionary,

“preemptive” cell phone use and social networking, especially

as they might affect professional activities, such as personal

interactions with patients and compliance with institutional

privacy and security standards.
All things considered, from technology development to

educational research and in the context of cycles of curricular

reforms, the diffusion of computer-based e-learning methods

has had deep influences in the evolution of the current state

of anatomical sciences education. The related promises and

challenges have made clear that continuing study and mastery

of e-learning methods and learning efficacy research will be

just as crucial to the continuing academic success of modern

teaching anatomists, as mastery of integral scientific comput-

ing methods (Trelease, 2002) is to success in modern biomed-

ical research. Furthermore, the greatest, most appropriate use

of educational technology in specific curricula will remain

that which is based on sound educational, scientific, and

humanistic principles.
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